Journal of Organometallic Chemistry, 411 (1991) 347–356 Elsevier Sequoia S.A., Lausanne JOM 21618

Monomere Organosamarium(III)chalkogenolate durch reduktive Spaltung von E-E-Bindungen (E = S, Se, Te) *

Anja Recknagel, Mathias Noltemeyer, Dietmar Stalke, Ursula Pieper, Hans-Georg Schmidt und Frank T. Edelmann *

Institut für Anorganische Chemie der Universität Göttingen, Tammannstr. 4, W-3400 Göttingen (Deutschland)

(Eingegangen den 3. Dezember 1990)

Abstract

The THF adduct of decamethylsamarocene, $Cp_2^*Sm(THF)_2$, reacts with disulfides, diselenides and ditellurides to give organosamarium(III) complexes containing a Sm-E bond (E = S, Se, Te). The molecular structures of the complexes $Cp_2^*Sm(S_2CNMe_2)$ (1), $Cp_2^*Sm[TeC_6H_2Me_3-2,4,6](THF)$ (4) and $Cp_2^*Sm[SeC_6H_2(CF_3)_3-2,4,6](THF)$ (5) have been determined by X-ray diffraction.

Zusammenfassung

Das THF-Addukt des Decamethylsamarocens, $Cp_2^*Sm(THF)_2$, reagiert mit Disulfiden, Diseleniden und Ditelluriden zu Organosamarium(III)komplexen, die eine Sm-E-Bindung enthalten (E = S, Se, Te). Die Molekülstrukturen der Komplexe $Cp_2^*Sm(S_2CNMe_2)$ (1), $Cp_2^*Sm[TeC_6H_2Me_3-2,4,6](THF)$ (4) und $Cp_2^*Sm[SeC_6H_2(CF_3)_3-2,4,6]$ (THF) (5) wurden röntgenographisch bestimmt.

Als "harte" Metallionen bilden die dreiwertigen Lanthanide bevorzugt Metallkomplexe mit O- und N-Donorliganden. Weit weniger Beispiele gibt es dagegen für Organolanthanidkomplexe mit "weichen" Donoratomen wie Schwefel, Selen, Tellur, Phosphor oder Arsen [1]. Erst in jüngster Zeit wurden signifikante Fortschritte auf diesem Gebiet erzielt. Zu den ersten Organolanthanidverbindungen mit Schwefelliganden gehören die Dithiocarbamate $Cp_2^*Nd(S_2CNEt_2)$ und $Cp_2^*Yb(S_2CNEt_2)$ [2]. 1988 beschrieben Schumann et al. die ersten Organolutetium(III)chalkogenolate, von denen $Cp_2Lu(\mu-S^{1}Bu)_2Li(THF)_2$ und $Cp_2Lu(\mu-SePh)_2Li(THF)_2$ röntgenographisch charakterisiert werden konnten [3]. Verbrückende Thiolatliganden wurden auch in den gemischten Amidokomplexen $[Ln{N(SiMe_3)_2}_2(\mu-S^{1}Bu)]_2$ (Ln = Y, Eu, Gd) nachgewiesen [4]. Durch reduktive Spaltung von E-E-Bindungen (E = O, S, Se, Te) mit $Cp_2^*Yb(OEt_2)$ oder $Cp_2^*Yb(NH_3)_2$ wurden erstmals monomere

^{*} Herrn Professor Dr. Erwin Weiss zum 65. Geburtstag gewidmet.

Organoytterbium(III)chalkogenolate mit endständigen ER-Liganden zugänglich [5]. In ähnlicher Weise wurden 1989 die zweikernigen Ytterbium(III)komplexe (μ -E)[Cp₂^{*}Yb]₂ (E = O, S, Se, Te) erhalten [6]. Zu den wenigen vergleichbaren Samarium(III)derivaten gehören die Verbindungen Cp₂^{*}SmOC₆HMe₄ [7] und (μ -O)[Cp₂^{*}Sm]₂ [6,8]. Komplexe mit Sm-E-Bindungen zu Schwefel, Selen und Tellur waren bisher nicht bekannt. Wir haben daher das Reaktionsverhalten von Cp₂^{*}Sm(TPPF)₂ gegenüber Disalliden, Diseleniden und Ditelluriden untersacht und drei typische Reaktionsprodukte durch Einkristall-Röntgenstrukturanalysen charakterisiert.

 $Cp_2^*Sm(THF)_2$ reagiert mit Tetramethylthiuramdisulfid in Toluol unter Spaltung der Schwefel-Schwefel-Bindung. Die im Molverhältnis 2/1 durchgeführte Reaktion ist von einem auffähligen Farbumschlag von violen nach orangegelb beglehtet. Nach Umkristallisieren aus Hexan können luftempfindliche, orangegelbe Kristalle des Samarium/HIJdithiocarbamats {1} in 77% Ausbeute isoliert werden:

Spektroskopisch und elementaranalytisch läßt sich zeigen, daß der chelatisierende Dimethyldithiocarbamatligand beide THF-Moleküle im $Cp_2^*Sm(THF)_2$ substituiert. Im FI-Massenspektrum von 1 erscheint bei m/z 542 der Molekülpeak der THFfreien Spezies mit 100% relativer Intensität. Am Beispiel der Dimesityldichalkogenide MesEEMes $\{E = S, Se, Te\}$ konnte gezeigt werden, daß sich die Reaktion auch problemlos auf Selen- und Tellurderivate übertragen läßt. In allen drei Fällen lassen sich die monomeren Samarium(III)chalkogenolate in guten Ausbeuten isolieren. Dabei handelt es sich um die ersten Organometallverbindungen, die Samarium-Selen- bzw. Samarium-Tellur-Bindungen enthalten.

Die Komplexe 2-4 bilden luftempfindliche, orangerote Kristalle, die in Toluol und THF gut, in Hexan jedoch nur wenig löslich sind. Zum Umkristallisieren eignet sich besonders Cyclopentan. Trotz der raumerfüllenden Mesitylsubstituenten verdrängen die einzähnigen Chalkogenolatliganden jeweils nur ein THF-Molekül aus der Ausgangsverbindung. Im Gegensatz dazu beobachteten Andersen et al., daß die Reaktion von Cp^{*}₂Yb(OEt₂) mit Dimesityldisulfid zum solvatfreien Komplex Cp^{*}₂Yb(SC₆H₂Me₃-2,4,6) führt [5]. Die Ursache für dieses unterschiedliche Reaktionsverbahren dürfte in der Differenz der Yonenradien von Samarium und Ytterbium begründet sein. Der 2,4,6-Tris(trifluormethyl)phenyl-Substituent (= "Nonafluormesityl") hat sich in jüngster Zeit zu einem äußerst wertvollen Synthesebaustein in der Hauptgruppenchemie entwickelt [9–12]. Kürzlich berichteten wir über eine einfache Synthese des Bis(nonafluormesityl)diselenids $[2,4,6-(CF_3)_3C_6H_2Se]_2$ [13]. Auch dieses Diselenid reagiert mit 1 unter Bildung des Organosamarium(III)selenolats 5:

Die roten Kristalle von 5 sind deutlich oxidationsempfindlicher als die Mesitylderivate 2-4. Auch hier verbleibt ein THF-Ligand im Produktmolekül. Ein analoges Tellurderivat mit dem Nonafluormesitylsubstituenten ist nicht zugänglich, da das entsprechende Ditellurid $[2,4,6-(CF_3)_3C_6H_2Te]_2$ bisher nicht synthetisiert werden konnte [14].

Röntgenstrukturanalysen von $Cp_2^*Sm(S_2CNMe_2)$ (1), $Cp_2^*Sm[TeC_6H_2Me_3-2,4,6](THF)$ (4) und $Cp_2^*Sm[(SeC_6H_2(CF_3)_3-2,4,6](THF)$ (5)

Die Molekülstrukturen von 1, 4 und 5 sind in Fig. 1–3 dargestellt. Atomkoordinaten und isotrope Thermalparameter sind in Tab. 1–3, ausgewählte Bindungslängen und -winkel in Tab. 4 aufgeführt. Bei allen drei hier untersuchten Organosamariumkomplexen handelt es sich um gewinkelte Decamethylsamarocenderivate, in denen das zentrale Samariumatom die formale Koordinationszahl 8 besitzt. Bindungslängen und -winkel im Dithiocarbamat 1 lassen sich gut mit denen im ebenfalls röntgenographisch charakterisierten Organoytterbium(III)dithiocarbamat $Cp_2^*Yb(S_2CNEt_2)$ vergleichen [2]. In dieser Verbindung ist allerdings der

Fig. 1. Molekülstruktur von $Cp_2^*Sm(S_2CNMe_2)$ (1).

Fig. 2. Molekülstruktur von Cp^{*}₂Sm[TeC₆H₂Me₃-2,4,6](THF) (4).

Dithiocarbamatligand fehlgeordnet. $Sm-C(Cp^*)$ - und Sm-S-Abstände in 1 sind erwartungsgemäß um ca. 7–10 pm länger als in der Ytterbiumverbindung. (Die Differenz der Ionenradien von Sm und Yb beträgt 9 pm). Die S-Sm-S- und S-C-S-Winkel im viergliedrigen SmSCS-Ring entsprechen mit 64.1(1) bzw. 120.5(7)° recht gut denen im $Cp_2^*Yb(S_2CNEt_2)$ (S-Yb-S: 67.1(3)°, S-C-S: 121.4(8)° [2]).

Auch in den Selen- und Tellurderivaten ist das Samarium pseudo-tetraedrisch koordiniert. Der mittlere Sm-C-Abstand zu den Cp^{*}-Liganden beträgt 273.3(1) pm in 4 und 271.2(1) pm in 5 (vgl. 268(1) pm in Cp^{*}₂SmOC₆HMe₄ [7]). Im Organosamariumphenolat Cp^{*}₂SmOC₆HMe₄ ist die Sm-O-C-Einheit mit 172.3(1)° annähernd linear. Dagegen sind die entsprechenden Sm-E-C-Winkel in 4 und 5 deutlich kleiner (4: Sm-Te-C(1) 123.5(3)°, 5: Sm-Se-C(1) 126.4(1)°), was auf wesentlich geringere Sm-E-Mehrfachbindungsanteile hinweist. Da es sich um die ersten Organometallverbindungen mit Sm-Se- und Sm-Te-Bindungen handelt, gibt

Fig. 3. Molekülstruktur von $Cp_2^*Sm[SeC_6H_2(CF_3)_3-2,4,6](THF)$ (5).

Atom	x	у	Z	U _{eq} ^a
Sm	5000	3008(1)	2500	42(1)
S	4430(2)	1508(1)	1462(1)	70(1)
C(6)	5000	970(7)	2500	64(4)
N	5000	136(6)	2500	77(4)
C(7)	5456(9)	- 362(6)	3332(9)	103(5)
C(1)	2722(7)	2893(4)	2889(5)	51(3)
C(2)	3371(6)	3522(4)	3485(4)	50(2)
C(3)	3516(6)	4222(4)	2931(5)	48(2)
C(4)	2919(6)	4020(5)	1976(4)	53(2)
C(5)	2447(7)	3197(5)	1963(5)	54(3)
C(11)	2247(11)	2066(5)	3187(8)	81(4)
C(12)	3802(10)	3474(6)	4542(5)	80(4)
C(13)	3918(8)	5081(5)	3311(6)	69(3)
C(14)	2706(8)	4611(6)	1151(6)	80(4)
C(15)	1620(8)	2745(7)	1109(6)	82(4)

Atomkoordinaten ($\times 10^4$) und äquivalente isotrope Thermalparameter (pm² $\times 10^{-1}$) von 1

^a Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ii} Tensors.

es hier kaum Vergleichsmöglichkeiten. Zu den bisher strukturell untersuchten Samariumseleniden gehören die Verbindungen SmSe [15], SmSe_{2-x} [16], Sm₂Se₃ [16], Sm₂O₂Se [17] und BaSm₂Se₄ [18]. Lediglich für das nichtstöchiometrische "Samariumdiselenid" SmSe_{2-x} wurden Samarium-Selen-Abstände mitgeteilt (Sm-Se 300, 305, 307 pm [16]). Für **5** wurde die Sm-Se-Bindungslänge zu 291.9(1) pm ermittelt. Der Sm-Te-Abstand in **4** (308.7(2) pm) ist mit der Yb-Te-Bindungslänge in Cp^{*}₂Yb(TePh)(NH₃) (303.9(1) pm [5]) gut vergleichbar. Für die Kristallographisch untersuchte Verbindung SmO₂Te [19] wurden keine Angaben über interatomare Abstände gemacht. Deutliche Unterschiede zeigen die M-Te-C-Winkel in **5** (123.5(3)°) und dem Ytterbiumkomplex Cp^{*}₂Yb(TePh)(NH₃) (113.0(3)° [5]). Die Aufweitung dieses Winkels in **4** ist auf den sterisch anspruchsvolleren Mesitylsubstituenten zurückzuführen.

Experimenteller Teil

Tabelle 1

Alle Reaktionen wurden in ausgeheizten Schlenk-Apparaturen unter nachgereinigtem, trockenem Stickstoff durchgeführt. Die verwendeten Lösungsmittel waren sorgfältig getrocknet und vor Gebrauch über Natrium/Benzophenon frisch destilliert. $Cp_2^*Sm(THF)_2$ [20], Dimesityldisulfid [21], Dimesityldiselenid [22], Dimesitylditellurid [23] und [2,4,6-(CF₃)₃C₆H₂Se]₂ [13] wurden nach bekannten Literaturvorschriften synthetisiert. IR-Spektren: Perkin-Elmer 180 und 325, Nujol-Verreibungen zwischen KBr-Platten. ¹H-NMR-Spektren: Bruker WP 80 SY. Massenspektren: Finnigan MA 8230 und Varian MAT CH 5. Kristallstrukturanalysen: Siemens-Stoe Vierkreisdiffraktometer, Mo- K_{α} -Strahlung ($\lambda = 71.073$ nm), Graphitmonochromator. Strukturlösung (Direkte Methoden) und Verfeinerung mit SHELXTL-PLUS. Alle Nichtwasserstoffatome wurden anisotrop verfeinert. Es wurde eine semiempirische Absorptionskorrektur durchgeführt. Elementaranalysen: Analytisches Labor des Instituts für Anorganische Chemie der Universität Göttingen und Mikroanalytisches Labor Beller, Göttingen.

Atomxy2 C_{eq} Sm52(1)4376(1)3368(1)51(1)Te-1600(1)3998(1)1707(1)84(1)C(10)-637(8)3378(5)4649(9)75(4)C(11)-704(7)3963(6)5287(8)75(4)C(12)205(8)4170(5)5568(8)75(4)C(13)922(7)3747(5)5119(9)76(4)C(14)405(8)3250(5)4533(9)72(4)C(15)-1460(9)2920(6)4358(11)105(5)C(16)-1720(9)4200(8)5688(10)130(6)C(17)500(13)4699(7)6362(9)139(7)C(18)2037(8)3708(7)5418(12)122(5)C(20)1778(8)5001(5)2806(10)81(4)C(21)1070(9)5287(6)2112(13)100(5)C(22)745(8)4818(8)1334(9)94(5)C(23)1269(8)4239(6)1607(11)90(4)C(24)1923(7)4340(6)2487(10)80(4)C(25)2369(10)5355(7)3651(13)138(7)C(26)766(10)6012(6)2087(15)172(9)C(21)132(10)4970(11)386(11)164(9)C(25)2369(10)5355(7)3651(13)138(7)C(26)766(10)6012(6)2087(15)172(9)C(27)132(10)4970(11)386(11)164(9)C(28)1185(12)3626(8)866(12)161(8) <th></th> <th>······</th> <th></th> <th></th> <th>17 4</th>		······			17 4
Sm $52(1)$ $4376(1)$ $3368(1)$ $51(1)$ Te $-1600(1)$ $3998(1)$ $1707(1)$ $84(1)$ C(10) $-637(8)$ $3378(5)$ $4649(9)$ $75(4)$ C(11) $-704(7)$ $3963(6)$ $5287(8)$ $74(4)$ C(12) $205(8)$ $4170(5)$ $5568(8)$ $75(4)$ C(13) $922(7)$ $3747(5)$ $5119(9)$ $76(4)$ C(14) $405(8)$ $3250(5)$ $4533(9)$ $72(4)$ C(15) $-1460(9)$ $2920(6)$ $4358(11)$ $105(5)$ C(16) $-1720(9)$ $4200(8)$ $5688(10)$ $130(6)$ C(17) $500(13)$ $4699(7)$ $6362(9)$ $139(7)$ C(18) $2037(8)$ $3708(7)$ $5418(12)$ $123(6)$ C(19) $832(10)$ $2651(6)$ $4028(11)$ $102(5)$ C(20) $1778(8)$ $5001(5)$ $2806(10)$ $81(4)$ C(21) $1070(9)$ $5287(6)$ $2112(13)$ $100(5)$ C(22) $745(8)$ $4818(8)$ $1334(9)$ $94(5)$ C(23) $1269(8)$ $4239(6)$ $1607(11)$ $90(4)$ C(24) $1923(7)$ $4340(6)$ $2487(10)$ $80(4)$ C(25) $2369(10)$ $5355(7)$ $3651(13)$ $138(7)$ C(26) $766(10)$ $6012(6)$ $2087(15)$ $172(9)$ C(27) $132(10)$ $4970(11)$ $386(11)$ $164(9)$ C(28) $1185(12)$ $3626(8)$ $866(12)$ $161(8)$ C(29) $2769(9)$ $3921(8)$ $2779(13)$ </th <th>Atom</th> <th>x</th> <th>y</th> <th>4</th> <th>U_{eq}</th>	Atom	x	y	4	U _{eq}
Te $-1600(1)$ 3998(1) $1707(1)$ 84(1)C(10) $-637(8)$ 3378(5)4649(9)75(4)C(11) $-704(7)$ 3963(6)5287(8)74(4)C(12)205(8)4170(5)5568(8)75(4)C(13)922(7)3747(5)5119(9)76(4)C(14)405(8)3250(5)4533(9)72(4)C(15) $-1460(9)$ 920(6)4358(11)105(5)C(16) $-1720(9)$ 4200(8)5688(10)130(6)C(17)500(13)4699(7)6362(9)139(7)C(18)2037(8)3708(7)5418(12)123(6)C(20)1778(8)5001(5)2806(10)81(4)C(21)1070(9)5287(6)2112(13)100(5)C(22)745(8)4818(8)1334(9)94(5)C(23)1269(8)4239(6)1607(11)90(4)C(24)1923(7)4340(6)2487(10)80(4)C(25)2369(10)5355(7)3651(13)138(7)C(26)766(10)6012(6)2087(15)172(9)C(27)132(10)4970(11)386(11)164(9)C(28)1185(12)3626(8)866(12)161(8)C(29)2769(9)3921(8)2779(13)142(7)C(1) $-2799(8)$ 3344(4)2077(8)69(3)C(2) $-764(7)$ 705(5)1637(9)72(3)C(3) $-3599(10)$ 2308(5)1774(9)83(4)C(4) $-4465(10)$ 2505(7	Sm	52(1)	4376(1)	3368(1)	51(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Te	-1600(1)	3998(1)	1707(1)	84(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10)	- 637(8)	3378(5)	4649(9)	75(4)
$\begin{array}{cccccc} C(12) & 205(8) & 4170(5) & 5568(8) & 75(4) \\ C(13) & 922(7) & 3747(5) & 5119(9) & 76(4) \\ C(14) & 405(8) & 3250(5) & 4533(9) & 72(4) \\ C(15) & -1460(9) & 2920(6) & 4538(11) & 105(5) \\ C(16) & -1720(9) & 4200(8) & 5688(10) & 130(6) \\ C(17) & 500(13) & 4699(7) & 6362(9) & 139(7) \\ C(18) & 2037(8) & 3708(7) & 5418(12) & 123(6) \\ C(19) & 832(10) & 2651(6) & 4028(11) & 102(5) \\ C(20) & 1778(8) & 5001(5) & 2806(10) & 81(4) \\ C(21) & 1070(9) & 5287(6) & 2112(13) & 100(5) \\ C(22) & 745(8) & 4818(8) & 1334(9) & 94(5) \\ C(23) & 1269(8) & 4239(6) & 1607(11) & 90(4) \\ C(24) & 1923(7) & 4340(6) & 2487(10) & 80(4) \\ C(25) & 2369(10) & 5355(7) & 3651(13) & 138(7) \\ C(26) & 766(10) & 6012(6) & 2087(15) & 172(9) \\ C(27) & 132(10) & 4970(11) & 386(11) & 164(9) \\ C(28) & 1185(12) & 3626(8) & 866(12) & 161(8) \\ C(29) & 2769(9) & 3921(8) & 2779(13) & 142(7) \\ C(1) & -2799(8) & 3344(4) & 2077(8) & 69(3) \\ C(2) & -2762(7) & 2705(5) & 1637(9) & 72(3) \\ C(3) & -3599(10) & 2308(5) & 1774(9) & 83(4) \\ C(4) & -4465(10) & 2505(7) & 2295(10) & 94(5) \\ C(5) & -4433(10) & 3120(7) & 2727(10) & 93(5) \\ C(6) & -3641(8) & 3539(6) & 2642(8) & 79(4) \\ C(7) & -1875(9) & 2461(6) & 1013(10) & 102(5) \\ C(8) & -5341(13) & 2051(9) & 2305(14) & 177(10) \\ C(9) & -3686(10) & 4235(6) & 3182(11) & 113(5) \\ C(1) & -788(5) & 5422(3) & 3892(5) & 74(2) \\ O(30) & -1741(9) & 5631(6) & 3472(13) & 126(6) \\ C(31) & -1816(10) & 6330(5) & 3599(12) & 108(5) \\ C(32) & -951(10) & 6535(5) & 4274(11) & 97(5) \\ C(33) & -506(10) & 5909(5) & 4671(10) & 96(5) \\ C(33) & -506(10) & 5909(5) & 4671(10) & 96(5) \\ C(33) & -596(10) & 5909(5) & 4671(10) & 96(5) \\ C(33) & -596(10) & 5909(5) & 4671(10) & 96(5) \\ C(33) & -596(10) & 5909(5) & 4671(10) & 96(5) \\ C(33) & -596(10) & 5909(5) & 4671(10) & 96(5) \\ C(33) & -596(10) & 5909(5) & 4671(10) & 96(5) \\ C(33) & -596(10) & 5909(5) & 4671(10) & 96(5) \\ C(33) & -596(10) & 5909(5) & 4671(10) & 96(5) \\ C(33) & -596(10) & 5909(5) & 4671(10) & 96(5) \\ C(33) & -596(10) & 5909(5) & 4671(10) & 96(5) \\ C(33) & -596(10) & 5909(5) & 4671(1$	C(11)	-704(7)	3963(6)	5287(8)	74(4)
$\begin{array}{cccccc} C(13) & 922(7) & 3747(5) & 5119(9) & 76(4) \\ C(14) & 405(8) & 3250(5) & 4533(9) & 72(4) \\ C(15) & -1460(9) & 2920(6) & 4358(11) & 105(5) \\ C(16) & -1720(9) & 4200(8) & 5688(10) & 130(6) \\ C(17) & 500(13) & 4699(7) & 6362(9) & 139(7) \\ C(18) & 2037(8) & 3708(7) & 5418(12) & 123(6) \\ C(19) & 832(10) & 2651(6) & 4028(11) & 102(5) \\ C(20) & 1778(8) & 5001(5) & 2806(10) & 81(4) \\ C(21) & 1070(9) & 5287(6) & 2112(13) & 100(5) \\ C(22) & 745(8) & 4818(8) & 1334(9) & 94(5) \\ C(23) & 1269(8) & 4239(6) & 1607(11) & 90(4) \\ C(24) & 1923(7) & 4340(6) & 2487(10) & 80(4) \\ C(25) & 2369(10) & 5355(7) & 3651(13) & 138(7) \\ C(26) & 766(10) & 6012(6) & 2087(15) & 172(9) \\ C(27) & 132(10) & 4970(11) & 386(11) & 164(9) \\ C(28) & 1185(12) & 3626(8) & 866(12) & 161(8) \\ C(29) & 2769(9) & 3921(8) & 2779(13) & 142(7) \\ C(1) & -2799(8) & 3344(4) & 2077(8) & 69(3) \\ C(2) & -2762(7) & 2705(5) & 1637(9) & 72(3) \\ C(3) & -3599(10) & 2308(5) & 1774(9) & 83(4) \\ C(4) & -4465(10) & 2505(7) & 2295(10) & 94(5) \\ C(5) & -4453(10) & 3120(7) & 2727(10) & 93(5) \\ C(6) & -3641(8) & 3539(6) & 2642(8) & 79(4) \\ C(7) & -1875(9) & 2461(6) & 1013(10) & 102(5) \\ C(8) & -5341(13) & 2051(9) & 2305(14) & 177(10) \\ C(9) & -3686(10) & 4235(6) & 3182(11) & 113(5) \\ C(1) & -788(5) & 5422(3) & 3892(5) & 74(2) \\ C(3) & -1741(9) & 5631(6) & 3472(13) & 126(6) \\ C(31) & -1816(10) & 6330(5) & 3599(12) & 108(5) \\ C(32) & -951(10) & 6535(5) & 4274(11) & 97(5) \\ C(33) & -506(10) & 509(5) & 4671(10) & 96(5) \\ \end{array}$	C(12)	205(8)	4170(5)	5568(8)	75(4)
$\begin{array}{cccccc} C(14) & 405(8) & 3250(5) & 4533(9) & 72(4) \\ C(15) & -1460(9) & 2920(6) & 4358(11) & 105(5) \\ C(16) & -1720(9) & 4200(8) & 5688(10) & 130(6) \\ C(17) & 500(13) & 4699(7) & 6362(9) & 139(7) \\ C(18) & 2037(8) & 3708(7) & 5418(12) & 123(6) \\ C(19) & 832(10) & 2651(6) & 4028(11) & 102(5) \\ C(20) & 1778(8) & 5001(5) & 2806(10) & 81(4) \\ C(21) & 1070(9) & 5287(6) & 2112(13) & 100(5) \\ C(22) & 745(8) & 4818(8) & 1334(9) & 94(5) \\ C(23) & 1269(8) & 4239(6) & 1607(11) & 90(4) \\ C(24) & 1923(7) & 4340(6) & 2487(10) & 80(4) \\ C(25) & 2369(10) & 5355(7) & 3651(13) & 138(7) \\ C(26) & 766(10) & 6012(6) & 2087(15) & 172(9) \\ C(27) & 132(10) & 4970(11) & 386(11) & 164(9) \\ C(28) & 1185(12) & 3626(8) & 866(12) & 161(8) \\ C(29) & 2769(9) & 3921(8) & 2779(13) & 142(7) \\ C(1) & -2799(8) & 3344(4) & 2077(8) & 69(3) \\ C(2) & -2762(7) & 2705(5) & 1637(9) & 72(3) \\ C(3) & -3599(10) & 2308(5) & 1774(9) & 83(4) \\ C(4) & -4465(10) & 2505(7) & 2295(10) & 94(5) \\ C(5) & -4453(10) & 3120(7) & 2727(10) & 93(5) \\ C(6) & -3641(8) & 3539(6) & 2642(8) & 79(4) \\ C(7) & -1875(9) & 2461(6) & 1013(10) & 102(5) \\ C(8) & -5341(13) & 2051(9) & 2305(14) & 177(10) \\ C(9) & -368(5(10) & 4235(6) & 3182(11) & 113(5) \\ O(1) & -788(5) & 5422(3) & 3892(5) & 74(2) \\ O(30) & -1741(9) & 5631(6) & 3472(13) & 126(6) \\ C(31) & -1816(10) & 6330(5) & 3599(12) & 108(5) \\ C(32) & -951(10) & 6535(5) & 4274(11) & 97(5) \\ C(33) & -506(10) & 539(5) & 4671(10) & 96(5) \\ \end{array}$	C(13)	922(7)	3747(5)	5119(9)	76(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(14)	405(8)	3250(5)	4533(9)	72(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15)	- 1460(9)	2920(6)	4358(11)	105(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(16)	-1720(9)	4200(8)	5688(10)	130(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(17)	500(13)	4699(7)	6362(9)	139(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(18)	2037(8)	3708(7)	5418(12)	123(6)
$\begin{array}{cccccc} C(20) & 1778(8) & 5001(5) & 2806(10) & 81(4) \\ C(21) & 1070(9) & 5287(6) & 2112(13) & 100(5) \\ C(22) & 745(8) & 4818(8) & 1334(9) & 94(5) \\ C(23) & 1269(8) & 4239(6) & 1607(11) & 90(4) \\ C(24) & 1923(7) & 4340(6) & 2487(10) & 80(4) \\ C(25) & 2369(10) & 5355(7) & 3651(13) & 138(7) \\ C(26) & 766(10) & 6012(6) & 2087(15) & 172(9) \\ C(27) & 132(10) & 4970(11) & 386(11) & 164(9) \\ C(28) & 1185(12) & 3626(8) & 866(12) & 161(8) \\ C(29) & 2769(9) & 3921(8) & 2779(13) & 142(7) \\ C(1) & -2799(8) & 3344(4) & 2077(8) & 69(3) \\ C(2) & -2762(7) & 2705(5) & 1637(9) & 72(3) \\ C(3) & -3599(10) & 2308(5) & 1774(9) & 83(4) \\ C(4) & -4465(10) & 2505(7) & 2295(10) & 94(5) \\ C(5) & -4453(10) & 3120(7) & 2727(10) & 93(5) \\ C(6) & -3641(8) & 3539(6) & 2642(8) & 79(4) \\ C(7) & -1875(9) & 2461(6) & 1013(10) & 102(5) \\ C(8) & -5341(13) & 2051(9) & 2305(14) & 177(10) \\ C(9) & -3686(10) & 4235(6) & 3182(11) & 113(5) \\ O(1) & -788(5) & 5422(3) & 3892(5) & 74(2) \\ O(30) & -1741(9) & 5631(6) & 3472(13) & 126(6) \\ C(31) & -1816(10) & 6330(5) & 3599(12) & 108(5) \\ C(32) & -951(10) & 6535(5) & 4274(11) & 97(5) \\ C(33) & -506(10) & 599(5) & 4671(10) & 96(5) \\ \end{array}$	C(19)	832(10)	2651(6)	4028(11)	102(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(20)	1778(8)	5001(5)	2806(10)	81(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21)	1070(9)	5287(6)	2112(13)	100(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(22)	745(8)	4818(8)	1334(9)	94(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(23)	1269(8)	4239(6)	1607(11)	90(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(24)	1923(7)	4340(6)	2487(10)	80(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(25)	2369(10)	5355(7)	3651(13)	138(7)
C(27)132(10)4970(11)386(11)164(9) $C(28)$ 1185(12)3626(8)866(12)161(8) $C(29)$ 2769(9)3921(8)2779(13)142(7) $C(1)$ $-2799(8)$ 3344(4)2077(8)69(3) $C(2)$ $-2762(7)$ 2705(5)1637(9)72(3) $C(3)$ $-3599(10)$ 2308(5)1774(9)83(4) $C(4)$ $-4465(10)$ 2505(7)2295(10)94(5) $C(5)$ $-4453(10)$ 3120(7)2727(10)93(5) $C(6)$ $-3641(8)$ 3539(6)2642(8)79(4) $C(7)$ $-1875(9)$ 2461(6)1013(10)102(5) $C(8)$ $-5341(13)$ 2051(9)2305(14)177(10) $C(9)$ $-3686(10)$ 4235(6)3182(11)113(5) $O(1)$ $-788(5)$ 5422(3)3892(5)74(2) $O(30)$ $-1741(9)$ 5631(6)3472(13)126(6) $C(31)$ $-1816(10)$ 6330(5)3599(12)108(5) $C(32)$ $-951(10)$ 6535(5)4274(11)97(5) $C(33)$ $-506(10)$ 5909(5)4671(10)96(5)	C(26)	766(10)	6012(6)	2087(15)	172(9)
C(28) $1185(12)$ $3626(8)$ $866(12)$ $161(8)$ C(29) $2769(9)$ $3921(8)$ $2779(13)$ $142(7)$ C(1) $-2799(8)$ $3344(4)$ $2077(8)$ $69(3)$ C(2) $-2762(7)$ $2705(5)$ $1637(9)$ $72(3)$ C(3) $-3599(10)$ $2308(5)$ $1774(9)$ $83(4)$ C(4) $-4465(10)$ $2505(7)$ $2295(10)$ $94(5)$ C(5) $-4453(10)$ $3120(7)$ $2727(10)$ $93(5)$ C(6) $-3641(8)$ $3539(6)$ $2642(8)$ $79(4)$ C(7) $-1875(9)$ $2461(6)$ $1013(10)$ $102(5)$ C(8) $-5341(13)$ $2051(9)$ $2305(14)$ $177(10)$ C(9) $-3686(10)$ $4235(6)$ $3182(11)$ $113(5)$ O(1) $-788(5)$ $5422(3)$ $3892(5)$ $74(2)$ O(30) $-1741(9)$ $5631(6)$ $3472(13)$ $126(6)$ C(31) $-1816(10)$ $6330(5)$ $3599(12)$ $108(5)$ C(32) $-951(10)$ $6535(5)$ $4274(11)$ $97(5)$ C(33) $-506(10)$ $5909(5)$ $4671(10)$ $96(5)$	C(27)	132(10)	4970(11)	386(11)	164(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(28)	1185(12)	3626(8)	866(12)	161(8)
C(1) $-2799(8)$ $3344(4)$ $2077(8)$ $69(3)$ $C(2)$ $-2762(7)$ $2705(5)$ $1637(9)$ $72(3)$ $C(3)$ $-3599(10)$ $2308(5)$ $1774(9)$ $83(4)$ $C(4)$ $-4465(10)$ $2505(7)$ $2295(10)$ $94(5)$ $C(5)$ $-4453(10)$ $3120(7)$ $2727(10)$ $93(5)$ $C(6)$ $-3641(8)$ $3539(6)$ $2642(8)$ $79(4)$ $C(7)$ $-1875(9)$ $2461(6)$ $1013(10)$ $102(5)$ $C(8)$ $-5341(13)$ $2051(9)$ $2305(14)$ $177(10)$ $C(9)$ $-3686(10)$ $4235(6)$ $3182(11)$ $113(5)$ $O(1)$ $-788(5)$ $5422(3)$ $3892(5)$ $74(2)$ $O(30)$ $-1741(9)$ $5631(6)$ $3472(13)$ $126(6)$ $C(31)$ $-1816(10)$ $6330(5)$ $3599(12)$ $108(5)$ $C(32)$ $-951(10)$ $6535(5)$ $4274(11)$ $97(5)$ $C(33)$ $-506(10)$ $5909(5)$ $4671(10)$ $96(5)$	C(29)	2769(9)	3921(8)	2779(13)	142(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1)	- 2799(8)	3344(4)	2077(8)	69(3)
C(3) $-3599(10)$ $2308(5)$ $1774(9)$ $83(4)$ $C(4)$ $-4465(10)$ $2505(7)$ $2295(10)$ $94(5)$ $C(5)$ $-4453(10)$ $3120(7)$ $2727(10)$ $93(5)$ $C(6)$ $-3641(8)$ $3539(6)$ $2642(8)$ $79(4)$ $C(7)$ $-1875(9)$ $2461(6)$ $1013(10)$ $102(5)$ $C(8)$ $-5341(13)$ $2051(9)$ $2305(14)$ $177(10)$ $C(9)$ $-3686(10)$ $4235(6)$ $3182(11)$ $113(5)$ $O(1)$ $-788(5)$ $5422(3)$ $3892(5)$ $74(2)$ $O(30)$ $-1741(9)$ $5631(6)$ $3472(13)$ $126(6)$ $C(31)$ $-1816(10)$ $6330(5)$ $3599(12)$ $108(5)$ $C(32)$ $-951(10)$ $6535(5)$ $4274(11)$ $97(5)$ $C(33)$ $-506(10)$ $5909(5)$ $4671(10)$ $96(5)$	C(2)	-2762(7)	2705(5)	1637(9)	72(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3)	- 3599(10)	2308(5)	1774(9)	83(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)	-4465(10)	2505(7)	2295(10)	94(5)
C(6) $-3641(8)$ $3539(6)$ $2642(8)$ $79(4)$ $C(7)$ $-1875(9)$ $2461(6)$ $1013(10)$ $102(5)$ $C(8)$ $-5341(13)$ $2051(9)$ $2305(14)$ $177(10)$ $C(9)$ $-3686(10)$ $4235(6)$ $3182(11)$ $113(5)$ $O(1)$ $-788(5)$ $5422(3)$ $3892(5)$ $74(2)$ $O(30)$ $-1741(9)$ $5631(6)$ $3472(13)$ $126(6)$ $C(31)$ $-1816(10)$ $6330(5)$ $3599(12)$ $108(5)$ $C(32)$ $-951(10)$ $6535(5)$ $4274(11)$ $97(5)$ $C(33)$ $-506(10)$ $5909(5)$ $4671(10)$ $96(5)$	C(5)	-4453(10)	3120(7)	2727(10)	93(5)
C(7) $-1875(9)$ $2461(6)$ $1013(10)$ $102(5)$ $C(8)$ $-5341(13)$ $2051(9)$ $2305(14)$ $177(10)$ $C(9)$ $-3686(10)$ $4235(6)$ $3182(11)$ $113(5)$ $O(1)$ $-788(5)$ $5422(3)$ $3892(5)$ $74(2)$ $O(30)$ $-1741(9)$ $5631(6)$ $3472(13)$ $126(6)$ $C(31)$ $-1816(10)$ $6330(5)$ $3599(12)$ $108(5)$ $C(32)$ $-951(10)$ $6535(5)$ $4274(11)$ $97(5)$ $C(33)$ $-506(10)$ $5909(5)$ $4671(10)$ $96(5)$	Ció	- 3641(8)	3539(6)	2642(8)	79(4)
C(8) $-5341(13)$ $2051(9)$ $2305(14)$ $177(10)$ $C(9)$ $-3686(10)$ $4235(6)$ $3182(11)$ $113(5)$ $O(1)$ $-788(5)$ $5422(3)$ $3892(5)$ $74(2)$ $O(30)$ $-1741(9)$ $5631(6)$ $3472(13)$ $126(6)$ $C(31)$ $-1816(10)$ $6330(5)$ $3599(12)$ $108(5)$ $C(32)$ $-951(10)$ $6535(5)$ $4274(11)$ $97(5)$ $C(33)$ $-506(10)$ $5909(5)$ $4671(10)$ $96(5)$	C(7)	- 1875(9)	2461(6)	1013(10)	102(5)
$\begin{array}{ccccccc} C(9) & -3686(10) & 4235(6) & 3182(11) & 113(5) \\ O(1) & -788(5) & 5422(3) & 3892(5) & 74(2) \\ O(30) & -1741(9) & 5631(6) & 3472(13) & 126(6) \\ C(31) & -1816(10) & 6330(5) & 3599(12) & 108(5) \\ C(32) & -951(10) & 6535(5) & 4274(11) & 97(5) \\ C(33) & -506(10) & 5909(5) & 4671(10) & 96(5) \\ \end{array}$	C(8)	- 5341(13)	2051(9)	2305(14)	177(10)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C(9)	- 3686(10)	4235(6)	3182(11)	113(5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	om	- 788(5)	5422(3)	3892(5)	74(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(30)	-1741(9)	5631(6)	3472(13)	126(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	càn	-1816(10)	6330(5)	3599(12)	108(5)
C(33) - 506(10) 5909(5) 4671(10) 96(5)	C(32)	- 951(10)	6535(5)	4274(11)	97(5)
	C(33)	- 506(10)	5909(5)	4671(10)	96(5)

Atomkoordinaton	$(> 10^4)$ und	äquivalente	isotrone	Thermalnarameter	$(nm^2 \times 10)$	$^{-1}$) von 4
Atomkoordinaten	гхий гила	aomvalence	ISOLIODE	Thermandarameter	1000 × 10	1 YOLL 4

^a Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors.

Umsetzungen von $Cp_2^*Sm(THF)_2$ mit Disulfiden, Diseleniden und Ditelluriden (Allgemeine Arbeitsvorschrift)

Zur Lösung von 2.0 g (3.5 mmol) Cp^{*}₂Sm(THF)₂ in 60 ml Toluol gibt man unter kräftigem Rühren die angegebene Menge Dichalkogenid als Feststoff zu. Dabei erfolgt ein rascher Farbumschlag von tiefviolett nach orange. Man läßt noch 2 h bei Raumtemperatur rühren, filtriert über eine dünne Schicht Celite und dampft das Filtrat zur Trockne ein. Umkristallisieren des Rückstands aus 20 ml Hexan (1, 2) bzw. Cyclopentan (3–5) liefert ein analysenreines Produkt.

1. N,N-Dimethyldithiocarbamato-bis(pentamethylcyclopentadienyl)-samarium(III) (1)

Aus 0.43 g (1.8 mmol) Tetramethylthiuramdisulfid erhält man 0.80 g (42%) orangegelbe Kristalle vom Schmp. 255°C. IR: ν 1500s, 1260s, 1161m, 960m cm⁻¹.

Tabelle 2

Atom	x	y	Z	U _{eq} "
Sm	1055(1)	10700(1)	2381(1)	23(1)
Se	1663(1)	9461(1)	3190(1)	36(1)
C(10)	476(1)	9501(3)	1782(3)	26(1)
C(11)	561(1)	9976(3)	944(3)	27(1)
C(12)	352(2)	10738(3)	1087(4)	31(2)
C(13)	131(2)	10739(3)	1997(4)	34(2)
C(14)	208(2)	9968(3)	2427(3)	30(1)
C(15)	590(2)	8615(3)	1880(3)	33(2)
C(16)	788(2)	9673(3)	43(3)	37(2)
C(17)	316(2)	11408(3)	349(4)	45(2)
C(18)	-215(2)	11364(3)	2330(4)	52(2)
C(19)	0(2)	9669(3)	3351(4)	45(2)
C(20)	974(2)	12211(3)	3136(3)	31(2)
C(21)	1451(2)	12127(3)	2966(4)	30(2)
C(22)	1634(2)	11548(3)	3605(3)	33(2)
C(23)	1265(2)	11269(3)	4190(3)	36(2)
C(24)	859(2)	11671(3)	3900(3)	35(2)
C(25)	679(2)	12853(3)	2676(4)	46(2)
C(26)	1722(2)	12665(3)	2287(4)	43(2)
C(27)	2140(2)	11348(3)	3749(4)	52(2)
C(28)	1301(2)	10734(3)	5060(4)	54(2)
C(29)	405(2)	11627(3)	4436(4)	52(2)
C(1)	1626(2)	8324(3)	2972(3)	28(1)
C(2)	1428(2)	7803(3)	3655(3)	30(2)
C(3)	1436(2)	6960(3)	3546(4)	34(2)
C(4)	1636(2)	6613(3)	2743(3)	31(2)
C(5)	1833(2)	7106(3)	2057(3)	31(2)
C(6)	1830(2)	7945(3)	2164(3)	29(1)
C(7)	1197(2)	8125(3)	4553(4)	46(2)
F(1)	1037(1)	7523(2)	5111(2)	70(1)
F(2)	837(1)	8603(2)	4366(2)	60(1)
F(3)	1485(1)	8556(2)	5119(2)	63(1)
C(8)	1632(2)	5712(3)	2629(4)	43(2)
F(4)	1243(1)	5437(2)	2314(4)	127(3)
F(5)	1711(2)	5325(2)	3423(3)	118(2)
F(6)	1943(1)	5447(2)	2027(3)	88(2)
C(9)	2051(2)	8422(3)	1367(4)	42(2)
F(7)	2206(1)	7938(2)	660(2)	65(1)
F(8)	2413(1)	8866(2)	1645(2)	53(1)
F(9)	1752(1)	8940(2)	942(2)	47(1)
	1582(1)	11013(2)	1025(2)	33(1)
C(30)	20/8(2)	10840(3)	1175(4)	38(2)
(31)	2270(2)	10753(3)	185(4)	48(2)
(32)	2014(2)	11399(4)	- 357(4)	60(2)
C(33)	1534(2)	11409(3)	89(4)	45(2)

Tabelle 3 Atomkoordinaten ($\times 10^4$) und äquivalente isotrope Thermalparameter (pm² $\times 10^{-1}$) von 5

"Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors.

¹H-NMR (C_6D_6): δ 1.75 (s, 30H, C_5Me_5), 1.05 (s, 6H, NMe₂) ppm. MS (FI): m/z 542 (M, 100%). Analyse: Gef.: C, 48.6; H, 6.7; N, 2.6. $C_{23}H_{36}NS_2Sm$ (541.0) ber.: C, 50.9; H, 6.7; N, 2.6%.

Sm-S	280.8(2)	S-Sm-S(0a)	64.1(1)	
Sm 5(0a)			•(-)	
Sm-S(Ua)	280.8(2)	S-C(6)-S(0a)	120.5(7)	
Sm-C	271.1(7)			
	(Mittelwert)			
Sm–Te	308.8(2)	Sm-Te-C(1)	123.5(3)	
Sm-O(1)	249.6(7)			
Sm-C	273.3(11)			
	(Mittelwert)			
Sm-Se	291.9(1)	Sm-Se-C(1)	126.4(1)	
Sm-O(1)	247.9(3)			
Sm-C	273:4(4)			
	(Mittelwert)			
	Sm-C Sm-O(1) Sm-C Sm-Se Sm-O(1) Sm-C	$\begin{array}{cccc} Sm-C & 271.1(7) \\ (Mittelwert) \\ Sm-Te & 308.8(2) \\ Sm-O(1) & 249.6(7) \\ Sm-C & 273.3(11) \\ (Mittelwert) \\ \\ Sm-Se & 291.9(1) \\ Sm-O(1) & 247.9(3) \\ Sm-C & 273.4(4) \\ (Mittelwert) \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Ausgewählte Bindungslängen (pm) und -winkel (°) von 1, 4 und 5

2. Mesitylthio-bis(pentamethylcyclopentadienyl)-tetrahydrofuran-samarium(III) (2)

Ausgehend von 0.54 g (1.8 mmol) Dimesityldisulfid werden 0.80 g (35%) eines orangefarbenen Kristallpulvers isoliert, das bei 195 °C schmilzt. IR: ν 1256m, 1174m, 1087m, 1060s, 1016s, 849vs cm⁻¹. ¹H-NMR (C₆D₆): δ 6.80 (s, 2H, C₆H₂Me₃), 2.15 (m, 4H, THF), 1.78 (m, 4H, THF), 1.20 (s, 30H, C₅Me₅), -0.65 ($\nu_{1/2}$ 11 Hz, 9H, C₆H₂Me₃) ppm. MS (EI): m/z 573 (M – THF, 16%), 438 (M – Cp^{*} – THF, 100), 422 (Cp^{*}₂Sm, 83). Analyse: Gef.: C, 58.7; H, 7.5. C₁₃₁H₄₉OSSm (643.7) ber.: C, 61.5; H, 7.7%.

3. Mesitylseleno-bis(pentamethylcyclopentadienyl)-tetrahydrofuran-samarium(III) (3)

0.71 g (1.8 mmol) Dimesityldiselenid liefern 0.93 g (38%) eines orangeroten Kristallpulvers vom Schmp. 205 °C. IR: ν 1261s, 1171m, 1090s, 1019vs, 847vs cm⁻¹, ¹H-NMR (C₆D₆): δ 6.85 (s, 2H, C₆H₂Me₃), 2.06 (m, 4H, THF), 1.75 (m, 4H, THF), 1.25 (s, 30 H, C₅Me₅), -0.20 ($\nu_{1/2}$ 8 Hz, 9H, C₆H₂Me₃) ppm. MS (EI): m/z 621 (M – THF, 10%), 486 (M – Cp* – THF, 42), 422 (Cp₂*Sm, 100). Analyse: Gef.: C, 55.4; H, 6.7. C₃₃H₄₉OSeSm (691.1) ber.: C, 57.4; H, 7.1%.

4. Mesityltelluro-bis(pentamethylcyclopentadienyl)-tetrahydrofuran-samarium(III) (4)

Aus 0.88 g (1.8 mmol) Dimesitylditellurid erhält man 1.15 g (44%) gut ausgebildete, orangerote Kristalle vom Schmp. 172° C. IR: ν 1260m, 1173m, 1014vs, 846vs cm⁻¹. ¹H-NMR (C₆D₆): δ 6.75 (s, 2H, C₆H₂Me₃), 2.08 (m, 4H, THF), 1.75 (m, 4H, THF), 1.22 (s, 30H, C₅Me₅), -0.30 (s, 9H, C₆H₂Me₃) ppm. MS (EI): m/z 669 (M - THF, 36%), 534 (M - Cp^{*} - THF, 100), 422 (Cp₂*Sm, 24). Analyse: Gef.: C, 52.4; H, 6.7. C₁₃H₄₉OSmTe (739.4) ber.: C, 53.6; H, 6.4%.

5. Bis(pentamethylcyclopentadienyl)-tetrahydrofuran-2,4,6-tris(trifluormethyl)phenylseleno-samarium(III) (5)

Ausgehend von 1.27 g (1.8 mmol) $[2,4,6-(CF_3)_3C_6H_2Se]_2$ erhält man 1.22 g (41%) orangerote Kristalle vom Schmp. 125 °C. IR: ν 1620m, 1460s, 1365s, 1278vs, 1189vs, 1150vs, 916m, 684m cm⁻¹. ¹H-NMR (C_6D_6): δ 7.62 (s, 2H, C_6H_2), 1.05 (m, 4H, THF), 0.75 (s, 30H, C_5Me_5), 0.35 (m, 4H, THF) ppm. ¹⁹F-NMR (C_6D_6 , CFCl₃ ext.): δ -63.2 (s, 3F, *p*-CF₃), -64.8 (s, 6F, *o*-CF₃) ppm. MS (EI): m/z 780

Tabelle 4

(M - THF, 20%), 121 (C₅Me₄, 100). Analyse: Gef.: C, 44.5; H, 4.6. C₃₃H₄₀F₉OSeSm (852.8) ber.: C, 46.5; H, 4.7%.

Röntgenstrukturanalyse von 1 [24]

 $C_{23}H_{36}NS_2Sm$, M = 541.0, Kristallgröße: $0.5 \times 0.5 \times 0.7$ mm, monoklin, Raumgruppe C2/c, a 1095.3(5), b 1586.3(8), c 1468.8(7) pm, β 105.00 (3)°, V 2.465 nm³, Z = 4, D_{ber} 1.460 g cm⁻³, μ (Mo- K_a) 2.56 mm⁻¹, 3876 gemessene Intensitäten ($2\theta_{max} = 45^\circ$), davon 1607 unabhängig und 1521 mit $F > 3\sigma F$ beobachtet; R = 0.043, $R_w = 0.056$ ($w^{-1} = \sigma^2(F) + 0.0008F^2$).

Röntgenstrukturanalyse von 4 [24]

 $C_{33}H_{49}OSmTe$, M = 739.7, Kristallgröße: $0.6 \times 0.6 \times 0.9$ mm, orthorhombisch, Raumgruppe $P2_12_12_1$, a 1330.8(8), b 2043.2(3), c 1219.6(2) pm, V 3.316 nm³, Z = 4, D_{ber} , 1.482 g cm⁻³, μ (Mo- K_a) 2.66 mm⁻¹, 2513 gemessene Intensitäten ($2\theta_{max} = 45^{\circ}$), davon 2442 unabhängig und 2343 mit $F > 3\sigma F$ beobachtet; R = 0.030, $R_w = 0.032$ ($w^{-1} = \sigma^2(F) + 0.0002F^2$).

Röntgenstrukturanalyse von 5 [24]

 $C_{33}H_{40}F_9OSeSm$, M = 853.0, Kristallgröße: $0.3 \times 0.5 \times 0.5$ mm, orthorhombisch, Raumgruppe *Pbca*, a 2892.6(2), b 1647.8(1), c 1391.3(1) pm, V 6.631 nm³, Z = 8, D_{ber} 1.709 g cm⁻³, μ (Mo- K_a) 2.84 mm⁻¹, T = -120 °C. 10959 gemessene Intensitäten ($2\theta_{max} = 45^{\circ}$), davon 5812 unabhängig und 4821 mit $F > 4\sigma F$ beobachtet; R = 0.037, $R_w = 0.037$ ($w^{-1} = \sigma^2(F) + 0.0001F^2$).

Dank

Wir danken Herrn Prof. Dr. Herbert W. Roesky und Herrn Prof. G.M. Sheldrick für die großzügige Unterstützung dieser Arbeit. Der Deutschen Forschungsgemeinschaft sind wir für finanzielle Hilfe zu Dank verpflichtet.

Literatur

- 1 H. Schumann, Angew. Chem., 96 (1984) 475; Angew. Chem. Int. Ed. Engl., 23 (1984) 484.
- 2 T.D. Tilley, R.A. Andersen, A. Zalkin und D.H. Templeton, Inorg. Chem., 21 (1982) 2644.
- 3 H. Schumann, I. Albrecht, M. Gallagher, E. Hahn, C. Muchmore und J. Pickardt, J. Organomet. Chem., 349 (1988) 103.
- 4 H.C. Aspinall, D.C. Bradley, M.B. Hursthouse, K.D. Sales und N.P.C. Walker, J. Chem. Soc., Chem. Commun., (1985) 1585.
- 5 D.J. Berg, R.A. Andersen und A. Zalkin, Organometallics, 7 (1988) 1858.
- 6 D.J. Berg, C.J. Burns, R.A. Andersen and A. Zalkin, Organometallics, 8 (1989) 1865.
- 7 W.J. Evans, T.P. Hanusa und K.R. Levan, Inorg. Chim. Acta, 110 (1985) 191.
- 8 W.J. Evans, J.G. Grate, I. Bloom, W.E. Hunter und J.L. Atwood, J. Am. Chem. Soc., 103 (1981) 6507.
- 9 G.E. Carr, R.D. Chambers, T.F. Holmes und D.G. Parker, J. Organomet. Chem., 325 (1987) 13.
- 10 M. Scholz, H.W. Roesky, D. Stalke, K. Keller und F.T. Edelmann, J. Organomet. Chem., 366 (1989) 73.
- 11 H.W. Roesky, M. Scholz, M. Noltemeyer und F.T. Edelmann, Inorg. Chem., 28 (1989) 3928.
- 12 M. Scholz, M. Noltemeyer und H.W. Roesky, Angew. Chem., 101 (1989) 1419; Angew. Chem. Int. Ed. Engl., 28 (1989) 1383.
- 13 N. Bertel, H.W. Roesky, F.T. Edelmann, M. Noltemeyer und H.-G. Schmidt, Z. Anorg. Allg. Chem., 586 (1990) 7.
- 14 N. Bertel, Dissertation, Universität Göttingen 1990.

- 15 M. Guittard und A. Benacerraf, C. R. Acad. Sci., 248 (1959) 2589.
- 16 A.A. Eliseev, J. Laurier, G. Kola, E.I. Yarembash und M.K. Suleimanov, Zh. Strukt. Khim., 9 (1968) 538.
- 17 H.A. Eick, Acta Cryst., 13 (1960) 161.
- 18 M. Patrie, S.M. Golabi, J. Flahaut und L. Domange, C. R. Acad. Sci., 259 (1964) 4039.
- 19 M.-P. Pardo, J. Flahaut und L. Domange, C. R. Acad. Sci., 225 (1962) 937.
- 20 W.J. Evans, J.W. Grate, H.W. Choi, I. Bloom, W.E. Hunter und J.L. Atwood, J. Am. Chem. Soc., 107 (1985) 941.
- 21 C-H. Wang und S.G. Cohen, J. Am. Chem. Soc., 79 (1957) 1924.
- 22 I. Kuwajima, M. Shimizu und H. Urabe, J. Org. Chem., 47 (1982) 837.
- 23 M. Akiba, M.V. Lakshmikantham, K.-Y. Jen und M.P. Cava, J. Org. Chem., 49 (1984) 4819.
- 24 Weitere Einzelheiten zu den Kristallstrukturanalysen können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-55164, der Autoren und des Zeitschriftenzitats angefordert werden.